CHAPTER - 33

THERMAL AND CHEMICAL EFFECTS OF ELECTRIC CURRENT

1. $i=2 A, \quad r=25 \Omega$,
$\mathrm{t}=1 \mathrm{~min}=60 \mathrm{sec}$
Heat developed $=i^{2} R T=2 \times 2 \times 25 \times 60=6000 \mathrm{~J}$
2. $R=100 \Omega$,

$$
E=6 v
$$

Heat capacity of the coil $=4 \mathrm{~J} / \mathrm{k}$

$$
\Delta \mathrm{T}=15^{\circ} \mathrm{C}
$$

Heat liberate $\Rightarrow \frac{E^{2}}{R t}=4 \mathrm{~J} / \mathrm{K} \times 15$
$\Rightarrow \frac{6 \times 6}{100} \times \mathrm{t}=60 \Rightarrow \mathrm{t}=166.67 \mathrm{sec}=2.8 \mathrm{~min}$
3. (a) The power consumed by a coil of resistance R when connected across a supply v is $P=\frac{v^{2}}{R}$ The resistance of the heater coil is, therefore $R=\frac{v^{2}}{P}=\frac{(250)^{2}}{500}=125 \Omega$
(b) If $P=1000 w$ then $R=\frac{v^{2}}{P}=\frac{(250)^{2}}{1000}=62.5 \Omega$
4. $f=1 \times 10^{-6} \Omega \mathrm{~m} \quad \mathrm{P}=500 \mathrm{~W}$
(a) $R=\frac{V^{2}}{P}=\frac{250 \times 250}{500}=125 \Omega$

(b) $\mathrm{A}=0.5 \mathrm{~mm}^{2}=0.5 \times 10^{-6} \mathrm{~m}^{2}=5 \times 10^{-7} \mathrm{~m}^{2}$
$\mathrm{R}=\frac{f \mathrm{l}}{\mathrm{A}}=\mathrm{I}=\frac{\mathrm{RA}}{f}=\frac{125 \times 5 \times 10^{-7}}{1 \times 10^{-6}}=625 \times 10^{-1}=62.5 \mathrm{~m}$
(c) $62.5=2 \pi r \times n, \quad 62.5=3 \times 3.14 \times 4 \times 10^{-3} \times n$
$\Rightarrow \mathrm{n}=\frac{62.5}{2 \times 3.14 \times 4 \times 10^{3}} \Rightarrow \mathrm{n}=\frac{62.5 \times 10^{-3}}{8 \times 3.14} \approx 2500$ turns
5. $V=250 \mathrm{~V} \quad \mathrm{~V}=100 \mathrm{~W}$
$R=\frac{v^{2}}{P}=\frac{(250)^{2}}{100}=625 \Omega$
Resistance of wire $R=\frac{f 1}{A}=1.7 \times 10^{-8} \times \frac{10}{5 \times 10^{-6}}=0.034 \Omega$
\therefore The effect in resistance $=625.034 \Omega$
\therefore The current in the conductor $=\frac{\mathrm{V}}{\mathrm{R}}=\left(\frac{220}{625.034}\right) \mathrm{A}$

\therefore The power supplied by one side of connecting wire $=\left(\frac{220}{625.034}\right)^{2} \times 0.034$
\therefore The total power supplied $=\left(\frac{220}{625.034}\right)^{2} \times 0.034 \times 2=0.0084 \mathrm{w}=8.4 \mathrm{mw}$
6. $E=220 v \quad P=60 w$
$R=\frac{V^{2}}{P}=\frac{220 \times 220}{60}=\frac{220 \times 11}{3} \Omega$
(a) $E=180 v \quad P=\frac{V^{2}}{R}=\frac{180 \times 180 \times 3}{220 \times 11}=40.16 \approx 40 \mathrm{w}$
(b) $E=240 v$

$$
\mathrm{P}=\frac{\mathrm{V}^{2}}{\mathrm{R}}=\frac{240 \times 240 \times 3}{220 \times 11}=71.4 \approx 71 \mathrm{w}
$$

7. Output voltage $=220 \pm 1 \% \quad 1 \%$ of $220 \mathrm{~V}=2.2 \mathrm{v}$

The resistance of bulb $\mathrm{R}=\frac{\mathrm{V}^{2}}{\mathrm{P}}=\frac{(220)^{2}}{100}=484 \Omega$
(a) For minimum power consumed $V_{1}=220-1 \%=220-2.2=217.8$
$\therefore \mathrm{i}=\frac{\mathrm{V}_{1}}{\mathrm{R}}=\frac{217.8}{484}=0.45 \mathrm{~A}$
Power consumed $=\mathrm{i} \times \mathrm{V}_{1}=0.45 \times 217.8=98.01 \mathrm{~W}$
(b) for maximum power consumed $\mathrm{V}_{2}=220+1 \%=220+2.2=222.2$
$\therefore \mathrm{i}=\frac{\mathrm{V}_{2}}{\mathrm{R}}=\frac{222.2}{484}=0.459$
Power consumed $=\mathrm{i} \times \mathrm{V}_{2}=0.459 \times 222.2=102 \mathrm{~W}$
8. $V=220 \mathrm{v}$

$$
P=100 w
$$

$R=\frac{V^{2}}{P}=\frac{220 \times 220}{100}=484 \Omega$
$P=150 w \quad V=\sqrt{P R}=\sqrt{150 \times 22 \times 22}=22 \sqrt{150}=269.4 \approx 270 v$
9. $P=1000$

$$
V=220 v
$$ $\mathrm{R}=\frac{\mathrm{V}^{2}}{\mathrm{P}}=\frac{48400}{1000}=48.4 \Omega$

Mass of water $=\frac{1}{100} \times 1000=10 \mathrm{~kg}$

Heat required to raise the temp. of given amount of water $=\mathrm{ms} \Delta \mathrm{t}=10 \times 4200 \times 25=1050000$
Now heat liberated is only 60%. So $\frac{V^{2}}{R} \times T \times 60 \%=1050000$
$\Rightarrow \frac{(220)^{2}}{48.4} \times \frac{60}{100} \times T=1050000 \Rightarrow T=\frac{10500}{6} \times \frac{1}{60}$ nub $=29.16 \mathrm{~min}$.
10. Volume of water boiled $=4 \times 200 \mathrm{cc}=800 \mathrm{cc}$
$T_{1}=25^{\circ} \mathrm{C} \quad T_{2}=100^{\circ} \mathrm{C} \quad \Rightarrow T_{2}-T_{1}=75^{\circ} \mathrm{C}$
Mass of water boiled $=800 \times 1=800 \mathrm{gm}=0.8 \mathrm{~kg}$
Q (heat req.) $=\mathrm{MS} \Delta \theta=0.8 \times 4200 \times 75=252000 \mathrm{~J}$.
1000 watt - hour $=1000 \times 3600$ watt-sec $=1000 \times 3600 \mathrm{~J}$
No. of units $=\frac{252000}{1000 \times 3600}=0.07=7$ paise
(b) $\mathrm{Q}=\mathrm{mS} \Delta \mathrm{T}=0.8 \times 4200 \times 95 \mathrm{~J}$

No. of units $=\frac{0.8 \times 4200 \times 95}{1000 \times 3600}=0.0886 \approx 0.09$
Money consumed $=0.09$ Rs $=9$ paise.
11. $P=100 \mathrm{w}$
$\mathrm{V}=220 \mathrm{v}$
Case I: Excess power = 100-40=60 w
Power converted to light $=\frac{60 \times 60}{100}=36 \mathrm{w}$
Case II : Power $=\frac{(220)^{2}}{484}=82.64 \mathrm{w}$
Excess power $=82.64-40=42.64 \mathrm{w}$
Power converted to light $=42.64 \times \frac{60}{100}=25.584 \mathrm{w}$
$\Delta \mathrm{P}=36-25.584=10.416$
Required $\%=\frac{10.416}{36} \times 100=28.93 \approx 29 \%$
12. $\mathrm{R}_{\mathrm{eff}}=\frac{12}{8}+1=\frac{5}{2} \quad \mathrm{i}=\frac{6}{(5 / 2)}=\frac{12}{5} \mathrm{Amp}$.
$\mathrm{i}^{\prime} 6=\left(\mathrm{i}-\mathrm{i}^{\prime}\right) 2 \Rightarrow \mathrm{i}^{\prime} 6=\frac{12}{5} \times 2-2 \mathrm{i}$
$8 i^{\prime}=\frac{24}{5} \Rightarrow \mathrm{i}^{\prime}=\frac{24}{5 \times 8}=\frac{3}{5} \mathrm{Amp}$

(a) Heat $=\mathrm{i}^{2}$ RT $=\frac{9}{5} \times \frac{9}{5} \times 2 \times 15 \times 60=5832$

2000 J of heat raises the temp. by 1 K
5832 J of heat raises the temp. by 2.916 K .
(b) When 6Ω resistor get burnt $\mathrm{R}_{\text {eff }}=1+2=3 \Omega$ $i=\frac{6}{3}=2$ Amp.
Heat $=2 \times 2 \times 2 \times 15 \times 60=7200 \mathrm{~J}$
2000 J raises the temp. by 1 K
7200 J raises the temp by 3.6 k

13. $\theta=0.001^{\circ} \mathrm{C} \quad \mathrm{a}=-46 \times 10^{-6} \mathrm{v} / \mathrm{deg}$, $\quad \mathrm{b}=-0.48 \times 10^{-6} \mathrm{v} / \mathrm{deg}^{2}$

Emf $=\mathrm{a}_{\mathrm{BIAg}} \theta+(1 / 2) \mathrm{b}_{\mathrm{BIAg}} \theta^{2}=-46 \times 10^{-6} \times 0.001-(1 / 2) \times 0.48 \times 10^{-6}(0.001)^{2}$
$=-46 \times 10^{-9}-0.24 \times 10^{-12}=-46.00024 \times 10^{-9}=-4.6 \times 10^{-8} \mathrm{~V}$
14. $E=a_{A B} \theta+b_{A B} \theta^{2}$

$$
\mathrm{a}_{\mathrm{CuAg}}=\mathrm{a}_{\mathrm{CuPb}}-\mathrm{b}_{\mathrm{AgPb}}=2.76-2.5=0.26 \mu \mathrm{v} /{ }^{\circ} \mathrm{C}
$$

$\mathrm{b}_{\mathrm{CuAg}}=\mathrm{b}_{\mathrm{CuPb}}-\mathrm{b}_{\mathrm{AgPb}}=0.012-0.012 \mu \mathrm{VG}=0$
$E=a_{A B} \theta=(0.26 \times 40) \mu V=1.04 \times 10^{-5} V$
15. $\theta=0^{\circ} \mathrm{C}$
$\mathrm{a}_{\mathrm{Cu}, \mathrm{Fe}}=\mathrm{a}_{\mathrm{Cu}, \mathrm{Pb}}-\mathrm{a}_{\mathrm{Fe}, \mathrm{Pb}}=2.76-16.6=-13.8 \mu \mathrm{v} /{ }^{\circ} \mathrm{C}$
$\mathrm{B}_{\mathrm{Cu}, \mathrm{Fe}}=\mathrm{b}_{\mathrm{Cu}, \mathrm{Pb}}-\mathrm{b}_{\mathrm{Fe}, \mathrm{Pb}}=0.012+0.030=0.042 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}^{2}$
Neutral temp. on $-\frac{a}{b}=\frac{13.8}{0.042}{ }^{\circ} \mathrm{C}=328.57^{\circ} \mathrm{C}$
16. (a) 1eq. mass of the substance requires 96500 coulombs

Since the element is monoatomic, thus eq. mass $=$ mol. Mass
6.023×10^{23} atoms require 96500 C
1 atoms require $\frac{96500}{6.023 \times 10^{23}} \mathrm{C}=1.6 \times 10^{-19} \mathrm{C}$
(b) Since the element is diatomic eq.mass $=(1 / 2)$ mol.mass
$\therefore(1 / 2) \times 6.023 \times 10^{23}$ atoms 2eq. 96500 C
$\Rightarrow 1$ atom require $=\frac{96500 \times 2}{6.023 \times 10^{23}}=3.2 \times 10^{-19} \mathrm{C}$
17. At Wt. At $=107.9 \mathrm{~g} / \mathrm{mole}$
$\mathrm{I}=0.500 \mathrm{~A}$
$\mathrm{E}_{\mathrm{Ag}}=107.9 \mathrm{~g} \quad$ [As Ag is monoatomic]
$Z_{\text {Ag }}=\frac{E}{f}=\frac{107.9}{96500}=0.001118$
$M=$ Zit $=0.001118 \times 0.5 \times 3600=2.01$
18. $\mathrm{t}=3 \mathrm{~min}=180 \mathrm{sec} \quad \mathrm{w}=2 \mathrm{~g}$
E.C.E $=1.12 \times 10^{-6} \mathrm{~kg} / \mathrm{c}$
$\Rightarrow 3 \times 10^{-3}=1.12 \times 10^{-6} \times \mathrm{i} \times 180$
$\Rightarrow i=\frac{3 \times 10^{-3}}{1.12 \times 10^{-6} \times 180}=\frac{1}{6.72} \times 10^{2} \approx 15 \mathrm{Amp}$.
19. $\frac{\mathrm{H}_{2}}{22.4 \mathrm{~L}} \rightarrow 2 \mathrm{~g} \quad 1 \mathrm{~L} \rightarrow \frac{2}{22.4}$
$\mathrm{m}=$ Zit $\quad \frac{2}{22.4}=\frac{1}{96500} \times 5 \times \mathrm{T} \Rightarrow \mathrm{T}=\frac{2}{22.4} \times \frac{96500}{5}=1732.21 \mathrm{sec} \approx 28.7 \mathrm{~min} \approx 29 \mathrm{~min}$.
20. $\mathrm{w}_{1}=\mathrm{Zit} \Rightarrow 1=\frac{\mathrm{mm}}{3 \times 96500} \times 2 \times 1.5 \times 3600 \Rightarrow \mathrm{~mm}=\frac{3 \times 96500}{2 \times 1.5 \times 3600}=26.8 \mathrm{~g} / \mathrm{mole}$
$\frac{E_{1}}{E_{2}}=\frac{w_{1}}{w_{2}} \Rightarrow \frac{107.9}{\left(\frac{\mathrm{~mm}}{3}\right)}=\frac{w_{1}}{1} \Rightarrow w_{1}=\frac{107.9 \times 3}{26.8}=12.1 \mathrm{gm}$
21. $\mathrm{I}=15 \mathrm{~A} \quad$ Surface area $=200 \mathrm{~cm}^{2}, \quad$ Thickness $=0.1 \mathrm{~mm}$

Volume of Ag deposited $=200 \times 0.01=2 \mathrm{~cm}^{3}$ for one side
For both sides, Mass of $\mathrm{Ag}=4 \times 10.5=42 \mathrm{~g}$
$Z_{\text {Ag }}=\frac{E}{F}=\frac{107.9}{96500} \quad \mathrm{~m}=\mathrm{ZIT}$
$\Rightarrow 42=\frac{107.9}{96500} \times 15 \times \mathrm{T} \Rightarrow \mathrm{T}=\frac{42 \times 96500}{107.9 \times 15}=2504.17 \mathrm{sec}=41.73 \mathrm{~min} \approx 42 \mathrm{~min}$
22. $w=\mathrm{Zit}$
$2.68=\frac{107.9}{96500} \times \mathrm{i} \times 10 \times 60$
$\Rightarrow I=\frac{2.68 \times 965}{107.9 \times 6}=3.99 \approx 4 \mathrm{Amp}$
Heat developed in the 20Ω resister $=(4)^{2} \times 20 \times 10 \times 60=192000 \mathrm{~J}=192 \mathrm{KJ}$

23. For potential drop, $t=30 \mathrm{~min}=180 \mathrm{sec}$
$V_{i}=V_{f}+i R \Rightarrow 12=10+2 i \Leftrightarrow i=1 \mathrm{Amp}$
$\mathrm{m}=\mathrm{Zit}=\frac{107.9}{96500} \times 1 \times 30 \times 60=2.01 \mathrm{~g} \approx 2 \mathrm{~g}$
24. $\mathrm{A}=10 \mathrm{~cm}^{2} \times 10^{-4} \mathrm{~cm}^{2}$
$\mathrm{t}=10 \mathrm{~m}=10 \times 10^{-6}$
Volume $=\mathrm{A}(2 \mathrm{t})=10 \times 10^{-4} \times 2 \times 10 \times 10^{-6}=2 \times 10^{2} \times 10^{-10}=2 \times 10^{-8} \mathrm{~m}^{3}$
Mass $=2 \times 10^{-8} \times 9000=18 \times 10^{-5} \mathrm{~kg}$
$W=Z \times C \Rightarrow 18 \times 10^{-5}=3 \times 10^{-7} \times C$
$\Rightarrow \mathrm{q}=\frac{18 \times 10^{-5}}{3 \times 10^{-7}}=6 \times 10^{2}$
$V=\frac{W}{q}=\Rightarrow W=V q=12 \times 6 \times 10^{2}=76 \times 10^{2}=7.6 \mathrm{KJ}$

