SOLUTIONS TO CONCEPTS

CHAPTER - 5

1. $\mathrm{m}=2 \mathrm{~kg}$
$\mathrm{S}=10 \mathrm{~m}$
Let, acceleration = a, Initial velocity u $=0$.
$S=u t+1 / 2 a t^{2}$
$\Rightarrow 10=1 / 2 \mathrm{a}\left(2^{2}\right) \Rightarrow 10=2 \mathrm{a} \Rightarrow \mathrm{a}=5 \mathrm{~m} / \mathrm{s}^{2}$
Force: $F=m a=2 \times 5=10 \mathrm{~N}$ (Ans)
2. $u=40 \mathrm{~km} / \mathrm{hr}=\frac{40000}{3600}=11.11 \mathrm{~m} / \mathrm{s}$.
$\mathrm{m}=2000 \mathrm{~kg} ; \mathrm{v}=0 ; \mathrm{s}=4 \mathrm{~m}$
acceleration ' a ' $=\frac{\mathrm{v}^{2}-\mathrm{u}^{2}}{2 \mathrm{~s}}=\frac{0^{2}-(11.11)^{2}}{2 \times 4}=-\frac{123.43}{8}=-15.42 \mathrm{~m} / \mathrm{s}^{2}$ (deceleration)
So, braking force $=F=m a=2000 \times 15.42=30840=3.0810^{4} \mathrm{~N}($ Ans $)$
3.

Initial velocity	$u=0$ (negligible)
	$v=5 \times 10^{6} \mathrm{~m} / \mathrm{s}$.
	$\mathrm{s}=1 \mathrm{~cm}=1 \times 10^{-2} \mathrm{~m}$.

acceleration $\mathrm{a}=\frac{\mathrm{v}^{2}-\mathrm{u}^{2}}{2 \mathrm{~s}}=\frac{\left(5 \times 10^{6}\right)^{2}-0}{2 \times 1 \times 10^{-2}}=\frac{25 \times 10^{12}}{2 \times 10^{-2}}=12.5 \times 10^{14} \mathrm{~ms}^{-2}$
$F=m a=9.1 \times 10^{-31} \times 12.5 \times 10^{14}=113.75 \times 10^{-17}=1.1 \times 10^{-15} \mathrm{~N}$.
4.

$\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2} \quad \mathrm{~T}-0.3 \mathrm{~g}=0 \Rightarrow \mathrm{~T}=0.3 \mathrm{~g}=0.3 \times 10=3 \mathrm{~N}$
$\mathrm{T}_{1}-(0.2 \mathrm{~g}+\mathrm{T})=0 \Rightarrow \mathrm{~T}_{1}=0.2 \mathrm{~g}+\mathrm{T}=0.2 \times 10+3=5 \mathrm{~N}$
\therefore Tension in the two strings are $5 \mathrm{~N} \& 3 \mathrm{~N}$ respectively.
5.

Fig 1

Fig 2

Fig 3
$T+m a-F=0$
$\Rightarrow F=T+m a \Rightarrow F=T+T \quad$ from (i)
$\Rightarrow 2 \mathrm{~T}=\mathrm{F} \Rightarrow \mathrm{T}=\mathrm{F} / 2$
6. $\mathrm{m}=50 \mathrm{~g}=5 \times 10^{-2} \mathrm{~kg}$

As shown in the figure,
Slope of $O A=\operatorname{Tan} \theta \frac{A D}{O D}=\frac{15}{3}=5 \mathrm{~m} / \mathrm{s}^{2}$
So, at $t=2 \mathrm{sec}$ acceleration is $5 \mathrm{~m} / \mathrm{s}^{2}$
Force $=\mathrm{ma}=5 \times 10^{-2} \times 5=0.25 \mathrm{~N}$ along the motion

At $t=4 \sec \quad$ slope of $A B=0$, acceleration $=0\left[\tan 0^{\circ}=0\right]$
\therefore Force $=0$
At $t=6 \mathrm{sec}$, acceleration $=$ slope of $B C$.
In $\triangle \mathrm{BEC}=\tan \theta=\frac{\mathrm{BE}}{\mathrm{EC}}=\frac{15}{3}=5$.
Slope of $B C=\tan \left(180^{\circ}-\theta\right)=-\tan \theta=-5 \mathrm{~m} / \mathrm{s}^{2}$ (deceleration)
Force $=\mathrm{ma}=5 \times 10^{-2} 5=0.25 \mathrm{~N}$. Opposite to the motion.
7. Let, $\mathrm{F} \rightarrow$ contact force between m_{A} \& m_{B}.

And, $\mathrm{f} \rightarrow$ force exerted by experimenter.

Fig 2
$F+m_{A} a-f=0$
$\Rightarrow F=f-m_{A} a$

Fig 3

$$
\begin{align*}
& m_{B} a-f=0 \\
& \Rightarrow F=m_{B} a \tag{ii}
\end{align*}
$$

From eqn (i) and eqn (ii)
$\Rightarrow \mathrm{f}-\mathrm{m}_{\mathrm{A}} \mathrm{a}=\mathrm{m}_{\mathrm{B}} \mathrm{a} \Rightarrow \mathrm{f}=\mathrm{m}_{\mathrm{B}} \mathrm{a}+\mathrm{m}_{\mathrm{A}} \mathrm{a} \Rightarrow \mathrm{f}=\mathrm{a}\left(\mathrm{m}_{\mathrm{A}}+\mathrm{m}_{\mathrm{B}}\right)$.
$\Rightarrow f=\frac{F}{m_{B}}\left(m_{B}+m_{A}\right)=F\left(1+\frac{m_{A}}{m_{B}}\right)$ [because $\left.a=F / m_{B}\right]$
\therefore The force exerted by the experimenter is $F\left(1+\frac{m_{A}}{m_{B}}\right)$
8. $\mathrm{r}=1 \mathrm{~mm}=10^{-3}$
$' \mathrm{~m}$ ' $=4 \mathrm{mg}=4 \times 10^{-6} \mathrm{~kg}$
$s=10^{-3} \mathrm{~m}$.
$\mathrm{v}=0$
$\mathrm{u}=30 \mathrm{~m} / \mathrm{s}$.
So, $a=\frac{v^{2}-u^{2}}{2 \mathrm{~s}}=\frac{-30 \times 30}{2 \times 10^{-3}}=-4.5 \times 10^{5} \mathrm{~m} / \mathrm{s}^{2}$ (decelerating)
Taking magnitude only deceleration is $4.5 \times 10^{5} \mathrm{~m} / \mathrm{s}^{2}$
So, force $F=4 \times 10^{-6} \times 4.5 \times 10^{5}=1.8 \mathrm{~N}$
9. $x=20 \mathrm{~cm}=0.2 \mathrm{~m}, \mathrm{k}=15 \mathrm{~N} / \mathrm{m}, \mathrm{m}=0.3 \mathrm{~kg}$.

Acceleration $\mathrm{a}=\frac{\mathrm{F}}{\mathrm{m}}=\frac{-\mathrm{kx}}{\mathrm{x}}=\frac{-15(0.2)}{0.3}=-\frac{3}{0.3}=-10 \mathrm{~m} / \mathrm{s}^{2}$ (deceleration)
So, the acceleration is $10 \mathrm{~m} / \mathrm{s}^{2}$ opposite to the direction of motion
10. Let, the block m towards left through displacement x.
$\mathrm{F}_{1}=\mathrm{k}_{1} \times$ (compressed)
$\mathrm{F}_{2}=\mathrm{k}_{2} \times$ (expanded)
They are in same direction.

Resultant $F=F_{1}+F_{2} \Rightarrow F=k_{1} x+k_{2} x \Rightarrow F=x\left(k_{1}+k_{2}\right)$
So, $a=$ acceleration $=\frac{F}{m}=\frac{x\left(k_{1}+k_{2}\right)}{m}$ opposite to the displacement.
11. $m=5 \mathrm{~kg}$ of block A .
$\mathrm{ma}=10 \mathrm{~N}$
\Rightarrow a $10 / 5=2 \mathrm{~m} / \mathrm{s}^{2}$.

As there is no friction between $A \& B$, when the block A moves, Block B remains at rest in its position.

Initial velocity of $\mathrm{A}=\mathrm{u}=0$.
Distance to cover so that B separate out $\mathrm{s}=0.2 \mathrm{~m}$.
Acceleration $\mathrm{a}=2 \mathrm{~m} / \mathrm{s}^{2}$
$\therefore \mathrm{s}=\mathrm{ut}+1 / 2 \mathrm{at}^{2}$
$\Rightarrow 0.2=0+(1 / 2) \times 2 \times t^{2} \Rightarrow t^{2}=0.2 \Rightarrow t=0.44 \mathrm{sec} \Rightarrow t=0.45 \mathrm{sec}$.

12. a) at any depth let the ropes make angle θ with the vertical

From the free body diagram
$F \cos \theta+F \cos \theta-m g=0$
$\Rightarrow 2 F \cos \theta=m g \Rightarrow F=\frac{m g}{2 \cos \theta}$
As the man moves up. θ increases i.e. $\cos \theta$ decreases. Thus F increases.

b) When the man is at depth h

$$
\begin{aligned}
& \cos \theta=\frac{\mathrm{h}}{\sqrt{(\mathrm{~d} / 2)^{2}+\mathrm{h}^{2}}} \\
& \text { Force }=\frac{\mathrm{mg}}{\frac{\mathrm{~h}}{\sqrt{\frac{\mathrm{~d}^{2}}{4}+\mathrm{h}^{2}}}=\frac{\mathrm{mg}}{4 \mathrm{~h}} \sqrt{\mathrm{~d}^{2}+4 \mathrm{~h}^{2}}}
\end{aligned}
$$

13. From the free body diagram
$\therefore \mathrm{R}+0.5 \times 2-\mathrm{w}=0$
$\Rightarrow R=w-0.5 \times 2$
$=0.5(10-2)=4 \mathrm{~N}$.
So, the force exerted by the block A on the block B, is $4 N$.

14. a) The tension in the string is found out for the different conditions from the free body diagram as shown below.
$\mathrm{T}-(\mathrm{W}+0.06 \times 1.2)=0$

$$
\begin{aligned}
\Rightarrow \mathrm{T}= & 0.05 \times 9.8+0.05 \times 1.2 \\
& =0.55 \mathrm{~N}
\end{aligned}
$$

Fig-1

Fig-2
b) $\therefore \mathrm{T}+0.05 \times 1.2-0.05 \times 9.8=0$
$\Rightarrow T=0.05 \times 9.8-0.05 \times 1.2$

$$
=0.43 \mathrm{~N} .
$$

d) $\mathrm{T}+0.05 \times 1.2-\mathrm{W}=0$
$\Rightarrow \mathrm{T}=\mathrm{W}-0.05 \times 1.2$
$=0.43 \mathrm{~N}$.
e) $\mathrm{T}-(\mathrm{W}+0.05 \times 1.2)=0$

$$
\begin{aligned}
\Rightarrow T= & W+0.05 \times 1.2 \\
& =0.55 \mathrm{~N}
\end{aligned}
$$

Fig-5

$$
\begin{aligned}
& \mathrm{T}-\mathrm{W}=0 \\
& \Rightarrow \mathrm{~T}=\mathrm{W}=0.05 \times 9.8 \\
& =0.49 \mathrm{~N}
\end{aligned}
$$

Fig-3

0.05×1.2
Fig-8
f) When the elevator goes down with uniform velocity acceleration $=0$

$$
\begin{aligned}
& \mathrm{T}-\mathrm{W}=0 \\
& \Rightarrow \mathrm{~T}=\mathrm{W}=0.05 \times 9.8 \\
& \quad=0.49 \mathrm{~N} .
\end{aligned}
$$

15. When the elevator is accelerating upwards, maximum weight will be recorded.

Fig-11

Fig-12
$R-(W+m a)=0$
$\Rightarrow R=W+m a=m(g+a)$ max.wt.
When decelerating upwards, maximum weight will be recorded.
$R+m a-W=0$
$\Rightarrow R=W-m a=m(g-a)$
So, $m(g+a)=72 \times 9.9$
$\mathrm{m}(\mathrm{g}-\mathrm{a})=60 \times 9.9$
Now, $\mathrm{mg}+\mathrm{ma}=72 \times 9.9 \Rightarrow \mathrm{mg}-\mathrm{ma}=60 \times 9.9$
$\Rightarrow 2 \mathrm{mg}=1306.8$
$\Rightarrow \mathrm{m}=\frac{1306.8}{2 \times 9.9}=66 \mathrm{Kg}$
So, the true weight of the man is 66 kg .
Again, to find the acceleration, $\mathrm{mg}+\mathrm{ma}=72 \times 9.9$
$\Rightarrow \mathrm{a}=\frac{72 \times 9.9-66 \times 9.9}{66}=\frac{9.9}{11}=0.9 \mathrm{~m} / \mathrm{s}^{2}$.
16. Let the acceleration of the 3 kg mass relative to the êlevator is ' a ' in the downward direction.

As, shown in the free body diagram
$\mathrm{T}-1.5 \mathrm{~g}-1.5(\mathrm{~g} / 10)-1.5 \mathrm{a}=0 \quad$ from figure (1)
$\begin{array}{ll}\mathrm{T}-1.5 \mathrm{~g}-1.5(\mathrm{~g} / 10)-1.5 \mathrm{a}=0 & \text { from figure (1) } \\ \text { and, } T-3 \mathrm{~g}-3(\mathrm{~g} / 10)+3 \mathrm{a}=0 & \text { from figure (2) }\end{array}$
$\Rightarrow \mathrm{T}=1.5 \mathrm{~g}+1.5(\mathrm{~g} / 10)+1.5 \mathrm{a}$
And $T=3 g+3(g / 10)-3 a$
Equation (i) $\times 2 \Rightarrow 3 \mathrm{~g}+3(\mathrm{~g} / 10)+3 \mathrm{a}=2 \mathrm{~T}$
Equation (ii) $\times 1 \Rightarrow 3 g+3(g / 10)-3 a=T$
Subtracting the above two equations we get, $T=6 a$
Subtracting $\mathrm{T}=6 \mathrm{a}$ in equation (ii)
$6 a=3 g+3(g / 10)-3 a$.
$\Rightarrow 9 \mathrm{a}=\frac{33 \mathrm{~g}}{10} \Rightarrow \mathrm{a}=\frac{(9.8) 33}{10}=32.34$
$\Rightarrow \mathrm{a}=3.59 \therefore \mathrm{~T}=6 \mathrm{a}=6 \times 3.59=21.55$
$\mathrm{T}^{1}=2 \mathrm{~T}=2 \times 21.55=43.1 \mathrm{~N}$ cut is T_{1} shown in spring.
Mass $=\frac{\mathrm{wt}}{\mathrm{g}}=\frac{43.1}{9.8}=4.39=4.4 \mathrm{~kg}$
17. Given, $m=2 \mathrm{~kg}, \mathrm{k}=100 \mathrm{~N} / \mathrm{m}$

From the free body diagram, $\mathrm{kl}-2 \mathrm{~g}=0 \Rightarrow \mathrm{kl}=2 \mathrm{~g}$
$\Rightarrow I=\frac{2 \mathrm{~g}}{\mathrm{k}}=\frac{2 \times 9.8}{100}=\frac{19.6}{100}=0.196=0.2 \mathrm{~m}$
Suppose further elongation when 1 kg block is added be x ,

Fig-1

Fig-2

18. $a=2 \mathrm{~m} / \mathrm{s}^{2}$
$k l-(2 g+2 a)=0$
$\Rightarrow \mathrm{kl}=2 \mathrm{~g}+2 \mathrm{a}$
$=2 \times 9.8+2 \times 2=19.6+4$
$\Rightarrow I=\frac{23.6}{100}=0.236 \mathrm{~m}=0.24 \mathrm{~m}$

When 1 kg body is added total mass $(2+1) \mathrm{kg}=3 \mathrm{~kg}$.
elongation be I_{1}
$\mathrm{kl}_{1}=3 \mathrm{~g}+3 \mathrm{a}=3 \times 9.8+6$
$\Rightarrow I_{1}=\frac{33.4}{100}=0.0334=0.36$
Further elongation $=I_{1}-I=0.36-0.12 \mathrm{~m}$.
19. Let, the air resistance force is F and Buoyant force is B.

Given that
$\mathrm{F}_{\mathrm{a}} \propto \mathrm{v}$, where $\mathrm{v} \rightarrow$ velocity
$\Rightarrow F_{a}=k v$, where $k \rightarrow$ proportionality constant.
When the balloon is moving downward,
$B+k v=m g$

$\Rightarrow M=\frac{B+k v}{g}$
For the balloon to rise with a constant velocity v, (upward)
let the mass be m
Here, $B-(m g+k v)=0$
$\Rightarrow B=m g+k v$
$\Rightarrow \mathrm{m}=\frac{\mathrm{B}-\mathrm{kw}}{\mathrm{g}}$

Fig-1

Fig-2

So, amount of mass that should be removed $=M-m$.
$=\frac{B+k v}{g}-\frac{B-k v}{g}=\frac{B+k v-B+k v}{g}=\frac{2 k v}{g}=\frac{2(M g-B)}{G}=2\{M-(B / g)\}$
20. When the box is accelerating upward,
$U-m g-m(g / 6)=0$
$\Rightarrow U=m g+m g / 6=m\{g+(g / 6)\}=7 \mathrm{mg} / 7$
$\Rightarrow \mathrm{m}=6 \mathrm{U} / 7 \mathrm{~g}$.
When it is accelerating downward, let the required mass be M .

$$
\begin{aligned}
& \mathrm{U}-\mathrm{Mg}+\mathrm{Mg} / 6=0 \\
\Rightarrow & \mathrm{U}=\frac{6 \mathrm{Mg}-\mathrm{Mg}}{6}=\frac{5 \mathrm{Mg}}{6} \Rightarrow \mathrm{M}=\frac{6 \mathrm{U}}{5 \mathrm{~g}}
\end{aligned}
$$

Mass to be added $=M-m=\frac{6 U}{5 g}-\frac{6 U}{7 g}=\frac{6 U}{g}\left(\frac{1}{5}-\frac{1}{7}\right)$
$=\frac{6 \mathrm{U}}{\mathrm{g}}\left(\frac{2}{35}\right)=\frac{12}{35}\left(\frac{\mathrm{U}}{\mathrm{g}}\right)$
$=\frac{12}{35}\left(\frac{7 \mathrm{mg}}{6} \times \frac{1}{\mathrm{~g}}\right) \quad$ from (i)

$=2 / 5 \mathrm{~m}$.
\therefore The mass to be added is $2 \mathrm{~m} / 5$.
21. Given that, $\overrightarrow{\mathrm{F}}=\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{mg}}$ act on the particle.

For the particle to move undeflected with constant velocity, net force should be zero.
$\therefore(\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{A}})+\overrightarrow{\mathrm{mg}}=0$
$\therefore(\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{A}})=-\overrightarrow{\mathrm{mg}}$

Because, $(\vec{u} \times \overrightarrow{\mathrm{A}})$ is perpendicular to the plane containing $\overrightarrow{\mathrm{u}}$ and $\overrightarrow{\mathrm{A}}, \overrightarrow{\mathrm{u}}$ should be in the xz-plane.
Again, $u \mathrm{~A} \sin \theta=\mathrm{mg}$
$\therefore \mathrm{u}=\frac{\mathrm{mg}}{\mathrm{A} \sin \theta}$
u will be minimum, when $\sin \theta=1 \Rightarrow \theta=90^{\circ}$
$\therefore u_{\text {min }}=\frac{\mathrm{mg}}{\mathrm{A}}$ along Z -axis.
22.

$m_{1}=0.3 \mathrm{~kg}, \mathrm{~m}_{2}=0.6 \mathrm{~kg}$
$T-\left(m_{1} g+m_{1} a\right)=0$
\ldots (i) $\Rightarrow T=m_{1} g+m_{1} a$
$T+m_{2} a-m_{2} g=0$
...(ii) $\Rightarrow T=m_{2} g-m_{2} a$
From equation (i) and equation (ii)
$m_{1} g+m_{1} a+m_{2} a-m_{2} g=0$, from (i)
$\Rightarrow \mathrm{a}\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right)=\mathrm{g}\left(\mathrm{m}_{2}-\mathrm{m}_{1}\right)$
$\Rightarrow \mathrm{a}=\mathrm{f}\left(\frac{\mathrm{m}_{2}-\mathrm{m}_{1}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}\right)=9.8\left(\frac{0.6-0.3}{0.6+0.3}\right)=3.266 \mathrm{~ms}^{2}$.
a) $t=2 \mathrm{sec}$ acceleration $=3.266 \mathrm{~ms}^{-2}$

Initial velocity $u=0$
So, distance travelled bythe body is,
$S=u t+1 / 2$ at $^{2} \Rightarrow 0+1 / 2(3.266) 2^{2}=6.5 \mathrm{~m}$
b) From (i) $\mathrm{T}=\mathrm{m}_{1}(\mathrm{~g}+\mathrm{a})=0.3(9.8+3.26)=3.9 \mathrm{~N}$
c) The force exerted by the clamp on the pully is given by

$\mathrm{F}-2 \mathrm{~T}=0$
$\mathrm{F}=2 \mathrm{~T}=2 \times 3.9=7.8 \mathrm{~N}$.
23. $a=3.26 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{T}=3.9 \mathrm{~N}$
After 2 sec mass m_{1} the velocity
$\mathrm{V}=\mathrm{u}+\mathrm{at}=0+3.26 \times 2=6.52 \mathrm{~m} / \mathrm{s}$ upward.
At this time m_{2} is moving $6.52 \mathrm{~m} / \mathrm{s}$ downward.
At time $2 \mathrm{sec}, \mathrm{m}_{2}$ stops for a moment. But m_{1} is moving upward with velocity $6.52 \mathrm{~m} / \mathrm{s}$.

It will continue to move till final velocity (at highest point) because zero.
Here, $v=0 ; u=6.52$
$A=-g=-9.8 \mathrm{~m} / \mathrm{s}^{2}$ [moving up ward m_{1}]
$V=u+a t \Rightarrow 0=6.52+(-9.8) t$
$\Rightarrow t=6.52 / 9.8=0.66=2 / 3 \mathrm{sec}$.
During this period $2 / 3 \mathrm{sec}, \mathrm{m}_{2}$ mass also starts moving downward. So the string becomes tight again after a time of $2 / 3 \mathrm{sec}$.
24. Mass per unit length $3 / 30 \mathrm{~kg} / \mathrm{cm}=0.10 \mathrm{~kg} / \mathrm{cm}$.

Mass of 10 cm part $=m_{1}=1 \mathrm{~kg}$
Mass of 20 cm part $=m_{2}=2 \mathrm{~kg}$.
Let, $\mathrm{F}=$ contact force between them.
From the free body diagram

$$
\begin{equation*}
F-20-10=0 \tag{i}
\end{equation*}
$$

And, $32-F-2 a=0$

From eqa (i) and (ii) $3 a-12=0 \Rightarrow a=12 / 3=4 \mathrm{~m} / \mathrm{s}^{2}$
Contact force $\mathrm{F}=20+1 \mathrm{a}=20+1 \times 4=24 \mathrm{~N}$.
25.

Fig-1

Fig-2

Fig-3
$\operatorname{Sin} \theta_{1}=4 / 5 \quad g \sin \theta_{1}-(a+T)=0$
$\sin \theta_{2}=3 / 5$

$$
\begin{equation*}
\Rightarrow g \operatorname{sing} \theta_{1}=a+T \tag{i}
\end{equation*}
$$

$$
\mathrm{T}-\mathrm{g} \sin \theta_{2}-\mathrm{a}=0
$$

$$
\begin{equation*}
\Rightarrow T=g \sin \theta_{2}+a \tag{ii}
\end{equation*}
$$

From eqn (i) and (ii), g sin $\theta_{2}+a+a-g \sin \theta_{1}=0$
$\Rightarrow 2 \mathrm{a}=\mathrm{g} \sin \theta_{1}-\mathrm{g} \sin \theta_{2}=\mathrm{g}\left(\frac{4}{5}-\frac{3}{5}\right)=\mathrm{g} / 5$
$\Rightarrow \mathrm{a}=\frac{\mathrm{g}}{5} \times \frac{1}{2}=\frac{\mathrm{g}}{10}$
26.

Fig-1

From the above Free body diagram

$$
M_{1} a+F-T=0 \Rightarrow T=m_{1} a+F \ldots \text { (i) }
$$

From the above Free body diagram

$$
\begin{aligned}
& m_{2} a+T-m_{2} g=0 \ldots \text { (ii) } \\
& \Rightarrow m_{2} a+m_{1} a+F-m_{2} g=0 \text { (from (i)) } \\
& \Rightarrow a\left(m_{1}+m_{2}\right)+m_{2} g / 2-m_{2} g=0\left\{b e c a u s e f=m^{2} g / 2\right\} \\
& \Rightarrow a\left(m_{1}+m_{2}\right)-m_{2} g=0 \\
& \Rightarrow a\left(m_{1}+m_{2}\right)=m_{2} g / 2 \Rightarrow a=\frac{m_{2} g}{2\left(m_{1}=m_{2}\right)}
\end{aligned}
$$

Acceleration of mass m_{1} is $\frac{m_{2} g}{2\left(m_{1}=m_{2}\right)}$ towards right.
27.

Fig-1

From the above free body diagram
$T+m_{1} a-m\left(m_{1} g+F\right)=0$

From the free body diagram

$$
T-\left(m_{2} g+F+m_{2} a\right)=0
$$

$\Rightarrow T=m_{1} g+F-m_{1} a \Rightarrow T=5 g+1-5 a$
$\Rightarrow T=m_{2} g+F+m_{2} a \Rightarrow T=2 g+1+2 a$
From the eqn (i) and eqn (ii)
$5 \mathrm{~g}+1-5 \mathrm{a}=2 \mathrm{~g}+1+2 \mathrm{a} \Rightarrow 3 \mathrm{~g}-7 \mathrm{a}=0 \Rightarrow 7 \mathrm{a}=3 \mathrm{~g}$
$\Rightarrow \mathrm{a}=\frac{3 \mathrm{~g}}{7}=\frac{29.4}{7}=4.2 \mathrm{~m} / \mathrm{s}^{2}\left[\mathrm{~g}=9.8 \mathrm{~m} / \mathrm{s}^{2}\right]$
a) acceleration of block is $4.2 \mathrm{~m} / \mathrm{s}^{2}$
b) After the string breaks m_{1} move downward with force F acting down ward.

$m_{1} a=F+m_{1} g=(1+5 g)=5(g+0.2) \quad$ Force $=1 \mathrm{~N}$, acceleration $=1 / 5=0.2 \mathrm{~m} / \mathrm{s}$.
So, acceleration $=\frac{\text { Force }}{\text { mass }}=\frac{5(\mathrm{~g}+0.2)}{5}=(\mathrm{g}+0.2) \mathrm{m} / \mathrm{s}^{2}$
28.

Fig-1
Let the block $m+1+$ moves upward with acceleration a, and the two blocks m_{2} an m_{3} have relative acceleration a_{2} due to the difference of weight between them. So, the actual acceleration at the blocks m_{1}, m_{2} and m_{3} will be a_{1}.
$\left(a_{1}-a_{2}\right)$ and $\left(a_{1}+a_{2}\right)$ as shown
$T=1 \mathrm{~g}-1 \mathrm{a}_{2}=0 \quad$...(i) from fig (2)
$\mathrm{T} / 2-2 \mathrm{~g}-2\left(\mathrm{a}_{1}-\mathrm{a}_{2}\right)=0$
...(ii) from fig (3)
$T / 2-3 g-3\left(a_{1}+a_{2}\right)=0$
...(iii) from fig (4)
From eqn (i) and eqn (ii), eliminating Twe get, $1 \mathrm{~g}+1 \mathrm{a}_{2}=4 \mathrm{~g}+4\left(\mathrm{a}_{1}+\mathrm{a}_{2}\right) \Rightarrow 5 \mathrm{a}_{2}-4 \mathrm{a}_{1}=3 \mathrm{~g}$ (iv)
From eqn (ii) and eqn (iii), we get $2 g+2\left(a_{1}-a_{2}\right)=3 g-3\left(a_{1}-a_{2}\right) \Rightarrow 5 a_{1}+a_{2}=(v)$
Solving (iv) and (v) $a_{1}=\frac{2 g}{29}$ and $a_{2}=g-5 a_{1}=g-\frac{10 g}{29}=\frac{19 g}{29}$
So, $\mathrm{a}_{1}-\mathrm{a}_{2}=\frac{2 \mathrm{~g}}{29}-\frac{19 \mathrm{~g}}{29}=-\frac{17 \mathrm{~g}}{29}$
$a_{1}+a_{2}=\frac{2 g}{29}+\frac{19 \mathrm{~g}}{29}=\frac{21 \mathrm{~g}}{29}$ So, acceleration of m_{1}, m_{2}, m_{3} ae $\frac{19 \mathrm{~g}}{29}$ (up) $\frac{17 \mathrm{~g}}{29}$ (doan) $\frac{21 \mathrm{~g}}{29}$ (down) respectively.
Again, for $m_{1}, u=0, s=20 \mathrm{~cm}=0.2 \mathrm{~m}$ and $\mathrm{a}_{2}=\frac{19}{29} \mathrm{~g}\left[\mathrm{~g}=10 \mathrm{~m} / \mathrm{s}^{2}\right]$
$\therefore \mathrm{S}=\mathrm{ut}+1 / 2 \mathrm{at}^{2}=0.2=\frac{1}{2} \times \frac{19}{29} \mathrm{gt}^{2} \Rightarrow \mathrm{t}=0.25 \mathrm{sec}$.
29.

Fig-1
m_{1} should be at rest.
$\mathrm{T}-\mathrm{m}_{1} \mathrm{~g}=0$

$$
\mathrm{T} / 2-2 \mathrm{~g}-2 \mathrm{a}_{1}=0
$$

$$
\begin{equation*}
\Rightarrow \mathrm{T}-4 \mathrm{~g}-4 \mathrm{a}_{1}=0 \tag{ii}
\end{equation*}
$$

$$
\begin{align*}
& \mathrm{T} / 2-3 \mathrm{~g}-3 \mathrm{a}_{1}=0 \\
& \Rightarrow \mathrm{~T}=6 \mathrm{~g}-6 \mathrm{a}_{1} \ldots \tag{iii}
\end{align*}
$$

From eqn (ii) \& (iii) we get
$3 \mathrm{~T}-12 \mathrm{~g}=12 \mathrm{~g}-2 \mathrm{~T} \Rightarrow \mathrm{~T}=24 \mathrm{~g} / 5=408 \mathrm{~g}$.
Putting yhe value of T eqn (i) we get, $\mathrm{m}_{1}=4.8 \mathrm{~kg}$.
30.

$T+1 \mathrm{a}=1 \mathrm{~g} \ldots$ (i)
From eqn (i) and (ii), we get
$1 \mathrm{a}+1 \mathrm{a}=1 \mathrm{~g} \Rightarrow 2 \mathrm{a}=\mathrm{g} \Rightarrow \mathrm{a}=\frac{\mathrm{g}}{2}=\frac{10}{2}=5 \mathrm{~m} / \mathrm{s}^{2}$
From (ii) $\mathrm{T}=1 \mathrm{a}=5 \mathrm{~N}$.
31.

$$
\begin{aligned}
& \mathrm{Ma}-2 \mathrm{~T}=0 \\
& \Rightarrow \mathrm{Ma}=2 \mathrm{~T} \Rightarrow \mathrm{~T}=\mathrm{Ma} / 2 .
\end{aligned}
$$

Fig-3

$$
T+M a-M g=0
$$

$$
\mathrm{T}-1 \mathrm{a}=0 \Rightarrow \mathrm{~T}=1 \mathrm{a}(\mathrm{ii})
$$

$$
\Rightarrow \mathrm{Ma} / 2+\mathrm{ma}=\mathrm{Mg} . \text { (because } \mathrm{T}=\mathrm{Ma} / 2)
$$

$$
\Rightarrow 3 \mathrm{Ma}=2 \mathrm{Mg} \Rightarrow \mathrm{a}=2 \mathrm{~g} / 3
$$

a) acceleration of mass M is $2 g / 3$.
b) Tension $T=\frac{M a}{2}=\frac{M}{2}=\frac{2 g}{3}=\frac{M g}{3}$
c) Let, $R^{1}=$ resultant of tensions = force exerted by the clamp on the pulley
$R^{1}=\sqrt{T^{2}+T^{2}}=\sqrt{2} T$
$\therefore R=\sqrt{2} T=\sqrt{2} \frac{M g}{3}=\frac{\sqrt{2} M g}{3}$
Again, $\operatorname{Tan} \theta=\frac{\mathrm{T}}{\mathrm{T}}=1 \Rightarrow \theta=45^{\circ}$.
So, it is $\frac{\sqrt{2} \mathrm{Mg}}{3}$ at an angle of 45° with horizontal.
32.

Fig-1

Fig-2

Fig-3

$$
\begin{array}{ll}
2 M a+M g \sin \theta-T=0 & \\
\Rightarrow T=2 M+2 M a-2 M g=0 \\
\Rightarrow & \Rightarrow 2(2 M a+M g \sin \theta)+2 M a-2 M g=0[\text { From (i)] } \\
& \Rightarrow 4 M a+2 M g \sin \theta+2 M a-2 M g=0 \\
& \Rightarrow 6 M a+2 M g \sin 30^{\circ}-2 M g=0 \\
& \Rightarrow 6 M a=M g \Rightarrow a=g / 6 .
\end{array}
$$

Acceleration of mass M is $2 \mathrm{a}=\mathrm{s} \times \mathrm{g} / 6=\mathrm{g} / 3$ up the plane.
33.

FBD-1

FBD-2

FBD-3

As the block ' m ' does not slinover M^{\prime}, ct will have same acceleration as that of M^{\prime} From the freebody diagrams.
$\mathrm{T}+\mathrm{Ma}-\mathrm{Mg}=0$
...(i) (From FBD - 1)
$\mathrm{T}-\mathrm{M}^{\prime} \mathrm{a}-\mathrm{R} \sin \theta=0$
...(ii) (From FBD -2)
$R \sin \theta-m a=0$
...(iii) (From FBD -3)
$R \cos \theta-m g=0$
...(iv) (From FBD -4)

Eliminating T, R and a from the above equation, we get $M=$

$$
\frac{M^{\prime}+m}{\cot \theta-1}
$$

34. a) $5 a+T-5 g=0 \Rightarrow T=5 g-5 a$
...(i) (From FBD-1)
Again (1/2) $-4 g-8 a=0 \Rightarrow T=8 g-16 a$ From equn (i) and (ii), we get $5 g-5 a=8 g+16 a \Rightarrow 21 a=-3 g \Rightarrow a=-1 / 7 g$
So, acceleration of 5 kg mass is $\mathrm{g} / 7$ upward and that of 4 kg mass is $2 \mathrm{a}=2 \mathrm{~g} / 7$ (downward).
b)

..(ii) (from FBD-2)

FBD-1

FBD-4
$4 \mathrm{a}-\mathrm{t} / 2=0 \Rightarrow 8 \mathrm{a}-\mathrm{T}=0 \Rightarrow \mathrm{~T}=8 \mathrm{a} \ldots$ (ii) [From FBD -4]
Again, $T+5 a-5 g=0 \Rightarrow 8 a+5 a-5 g=0$
$\Rightarrow 13 \mathrm{a}-5 \mathrm{~g}=0 \Rightarrow \mathrm{a}=5 \mathrm{~g} / 13$ downward. (from FBD -3)
Acceleration of mass $(A) \mathrm{kg}$ is $2 \mathrm{a}=10 / 13(\mathrm{~g}) \& 5 \mathrm{~kg}(B)$ is $5 \mathrm{~g} / 13$.
c)

$\mathrm{T}+1 \mathrm{a}-1 \mathrm{~g}=0 \Rightarrow \mathrm{~T}=1 \mathrm{~g}-1 \mathrm{a}$

FBD-6
...(i) [From FBD - 5]
Again, $\frac{\mathrm{T}}{2}-2 \mathrm{~g}-4 \mathrm{a}=0 \Rightarrow \mathrm{~T}-4 \mathrm{~g}-8 \mathrm{a}=0 \ldots$ (ii) [From FBD -6]
$\Rightarrow 1 \mathrm{~g}-1 \mathrm{a}-4 \mathrm{~g}-8 \mathrm{a}=0$ [From (i)]
$\Rightarrow \mathrm{a}=-(\mathrm{g} / 3)$ downward.
Acceleration of mass $1 \mathrm{~kg}(\mathrm{~b})$ is $\mathrm{g} / 3$ (up)
Acceleration of mass $2 \mathrm{~kg}(\mathrm{~A})$ is $2 \mathrm{~g} / 3$ (downward).
35. $\mathrm{m}_{1}=100 \mathrm{~g}=0.1 \mathrm{~kg}$
$\mathrm{m}_{2}=500 \mathrm{~g}=0.5 \mathrm{~kg}$
$\mathrm{m}_{3}=50 \mathrm{~g}=0.05 \mathrm{~kg}$.
$\mathrm{T}+0.5 \mathrm{a}-0.5 \mathrm{~g}=0$
$\mathrm{T}_{1}-0.5 \mathrm{a}-0.05 \mathrm{~g}=\mathrm{a}$
$\mathrm{T}_{1}+0.1 \mathrm{a}-\mathrm{T}+0.05 \mathrm{~g}=0$
From equn (ii) $\mathrm{T}_{1}=0.05 \mathrm{~g}+0.05 \mathrm{a}$
From equn (i) $\mathrm{T}_{1}=0.5 \mathrm{~g}-0.5 \mathrm{a}$
Equn (iii) becomes $\mathrm{T}_{1}+0.1 \mathrm{a}-\mathrm{T}+0.05 \mathrm{~g}=0$
$\Rightarrow 0.05 \mathrm{~g}+0.05 \mathrm{a}+0.1 \mathrm{a}-0.5 \mathrm{~g}+0.5 \mathrm{a}+0.05 \mathrm{~g}=0$ [From (iv)
and (v)]
$\Rightarrow 0.65 \mathrm{a}=0.4 \mathrm{~g} \Rightarrow \mathrm{a}=\frac{0.4}{0.65}=\frac{40}{65} \mathrm{~g}=\frac{8}{13} \mathrm{~g}$ downward

FBD-1

FBD-2

Acceleration of 500 gm block is $8 \mathrm{~g} / 13 \mathrm{~g}$ downward.
36. $m=15 \mathrm{~kg}$ of monkey. $\quad a=1 \mathrm{~m} / \mathrm{s}^{2}$.

From the free body diagram
$\therefore T-[15 \mathrm{~g}+15(1)]=0 \Rightarrow \mathrm{~T}=15(10+1) \Rightarrow \mathrm{T}=15 \times 11 \Rightarrow \mathrm{~T}=165 \mathrm{~N}$.
The monkey should apply 165 N force to the rope.
Initial velocity $u=0 ;$ acceleration $\mathrm{a}=1 \mathrm{~m} / \mathrm{s}^{2} ; \mathrm{s}=5 \mathrm{~m}$.
$\therefore s=u t+1 / 2$ at 2
$5=0+(1 / 2) 1 \mathrm{t}^{2} \quad \Rightarrow \mathrm{t}^{2}=5 \times 2 \quad \Rightarrow \mathrm{t}=\sqrt{10} \mathrm{sec}$.
Time required is $\sqrt{10} \mathrm{sec}$.
37. Suppose the monkey accelerates upward with acceleration 'a' \& the block, accelerate downward with acceleration a_{1}. Let Force exerted by monkey is equal to ' T '
From the free body diagram of monkey
$\therefore \mathrm{T}-\mathrm{mg}-\mathrm{ma}=0$
$\Rightarrow \mathrm{T}=\mathrm{mg}+\mathrm{ma}$.

Again, from the FBD of the block,
$\mathrm{T}=\mathrm{ma}_{1}-\mathrm{mg}=0$.

$\Rightarrow m g+m a+m a_{1}-m g=0[$ From (i) $] \Rightarrow m a=-m a_{1} \Rightarrow a=a_{1}$.
Acceleration '-a' downward i.e. 'a' upward.
\therefore The block \& the monkey move in the same direction with equal acceleration.
If initially they are rest (no force is exertied by monkey) no motion of monkey of block occurs as they have same weight (same mass). Their separation will not change as time passes.
38. Suppose A move upward with acceleration a, such that in the tail of A maximum tension 30N produced.

$T-5 g-30-5 a=0$
$\Rightarrow \mathrm{T}=50+30+(5 \times 5)=105 \mathrm{~N}$ (max)

Fig-3

$$
\begin{align*}
& 30-2 \mathrm{~g}-2 \mathrm{a}=0 \tag{ii}\\
& \Rightarrow 30-20-2 \mathrm{a}=0 \Rightarrow \mathrm{a}=5 \mathrm{~m} / \mathrm{s}^{2}
\end{align*}
$$

So, A can apply a maximum force of 105 N in the rope to carry the monkey B with it.

For minimum force there is no acceleration of monkey ' A ' and $B . \Rightarrow a=0$
Now equation (ii) is $\mathrm{T}^{\prime}{ }_{1}-2 \mathrm{~g}=0 \Rightarrow \mathrm{~T}^{\prime}{ }_{1}=20 \mathrm{~N}$ (wt. of monkey B)
Equation (i) is $\mathrm{T}-5 \mathrm{~g}-20=0$ [As $\left.\mathrm{T}^{\prime}{ }_{1}=20 \mathrm{~N}\right]$
$\Rightarrow \mathrm{T}=5 \mathrm{~g}+20=50+20=70 \mathrm{~N}$.
\therefore The monkey A should apply force between 70 N and 105 N to carry the monkey B with it.
39. (i) Given, Mass of $m a n=60 \mathrm{~kg}$.

Let $\mathrm{R}^{\prime}=$ apparent weight of man in this case.
Now, $\mathrm{R}^{\prime}+\mathrm{T}-60 \mathrm{~g}=0$ [From FBD of man]
$\Rightarrow \mathrm{T}=60 \mathrm{~g}-\mathrm{R}^{\prime}$
$T-R^{\prime}-30 g=0$
...(ii) [From FBD of box]
$\Rightarrow 60 \mathrm{~g}-\mathrm{R}^{\prime}-\mathrm{R}^{\prime}-30 \mathrm{~g}=0$ [From (i)]

$\Rightarrow R^{\prime}=15 \mathrm{~g}$ The weight shown by the machine is 15 kg .
(ii) To get his correct weight suppose the applied force is ' T ' and so, acclerates upward with ' a '. In this case, given that correct weight $=\mathrm{R}=60 \mathrm{~g}$, where $\mathrm{g}=\mathrm{acc}^{\mathrm{n}}$ due to gravity

From the FBD of the man
$T^{1}+R-60 g-60 a=0$
$\Rightarrow T^{1}-60 \mathrm{a}=0[\therefore \mathrm{R}=60 \mathrm{~g}]$
$\Rightarrow T^{1}=60 a$

From the FBD of the box
$T^{1}-R-30 g-30 a=0$

$$
\Rightarrow T^{1}-60 g-30 g-30 a=0
$$

$$
-30 a=90 g=900
$$

$$
\begin{equation*}
\Rightarrow T^{1}=30 a-900 \tag{ii}
\end{equation*}
$$

From eqn (i) and eqn (ii) we get $T^{1}=2 T^{1}-1800 \Rightarrow T^{1}=1800 \mathrm{~N}$.
\therefore So, he should exert 1800 N force on the rope to get correct reading.
40. The driving force on the block which n the body to move sown the plane is $\mathbf{F}=\mathrm{mg} \sin \theta$,

So, acceleration $=g \sin \theta$
Initial velocity of block $\mathrm{u}=0$.

$$
\mathrm{s}=\ell, \mathrm{a}=\mathrm{g} \sin \theta
$$

Now, $S=u t+1 / 2 a t^{2}$
$\Rightarrow \ell=0+1 / 2(g \sin \theta) \mathrm{t}^{2} \Rightarrow \mathrm{~g}^{2}=\frac{2 \ell}{\mathrm{~g} \sin \theta} \Rightarrow \mathrm{t}=\sqrt{\frac{2 \ell}{g \sin \theta}}$
Time taken is $\sqrt{\frac{2 \ell}{\mathrm{~g} \sin \theta}}$

41. Suppose pendulum makes θ angle with the vertical. Let, $m=$ mass of the pendulum.

From the free body diagram

$\mathrm{T} \cos \theta-\mathrm{mg}=0$
$\Rightarrow \mathrm{T} \cos \theta=\mathrm{mg}$
$\Rightarrow \mathrm{T}=\frac{\mathrm{mg}}{\cos \theta}$

$m a-T \sin \theta=0$
$\Rightarrow \mathrm{ma}=\mathrm{T} \sin \theta$

$$
\begin{equation*}
\Rightarrow t=\frac{m a}{\sin \theta} \tag{ii}
\end{equation*}
$$

From (i) \& (ii) $\frac{\mathrm{mg}}{\cos \theta}=\frac{\mathrm{ma}}{\sin \theta} \Rightarrow \tan \theta=\frac{\mathrm{a}}{\mathrm{g}} \Rightarrow \theta=\tan ^{-1} \frac{\mathrm{a}}{\mathrm{g}}$
The angle is $\operatorname{Tan}^{-1}(\mathrm{a} / \mathrm{g})$ with vertical.
(ii) $\mathrm{m} \rightarrow$ mass of block.

Suppose the angle of incline is ' θ '
From the diagram
$\mathrm{ma} \cos \theta-\mathrm{mg} \sin \theta=0 \Rightarrow \mathrm{ma} \cos \theta=\mathrm{mg} \sin \theta \Rightarrow \frac{\sin \theta}{\cos \theta}=\frac{\mathrm{a}}{\mathrm{g}}$

$\Rightarrow \tan \theta=\mathrm{a} / \mathrm{g} \Rightarrow \theta=\tan ^{-1}(\mathrm{a} / \mathrm{g})$.
42. Because, the elevator is moving downward with an acceleration $12 \mathrm{~m} / \mathrm{s}^{2}(>\mathrm{g})$, the bodygets separated. So, body moves with acceleration $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$ [freely falling body] and the elevator move with acceleration $12 \mathrm{~m} / \mathrm{s}^{2}$
Now, the block has acceleration $=\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$

$$
\begin{aligned}
u & =0 \\
t & =0.2 \mathrm{sec}
\end{aligned}
$$

So, the distance travelled by the block is given by.

$$
\begin{aligned}
\therefore \mathrm{s} & =\mathrm{ut}+1 / 2 \text { at }^{2} \\
& =0+(1 / 2) 10(0.2)^{2}=5 \times 0.04=0.2 \mathrm{~m}=20 \mathrm{~cm} .
\end{aligned}
$$

The displacement of body is 20 cm during first 0.2 sec .

