SOLUTIONS TO CONCEPTS circular motion;; CHAPTER 7

1. Distance between Earth & Moon $r = 3.85 \times 10^5 \text{ km} = 3.85 \times 10^8 \text{ m}$ T = 27.3 days = $24 \times 3600 \times (27.3)$ sec = 2.36×10^{6} sec $v = \frac{2\pi r}{T} = \frac{2 \times 3.14 \times 3.85 \times 10^8}{2.36 \times 10^6} = 1025.42 \text{m/sec}$ $a = \frac{v^2}{r} = \frac{(1025.42)^2}{3.85 \times 10^8} = 0.00273 \text{m/sec}^2 = 2.73 \times 10^{-3} \text{m/sec}^2$ 2. Diameter of earth = 12800km Radius R = 6400km = 64×10^5 m $V = \frac{2\pi R}{T} = \frac{2 \times 3.14 \times 64 \times 10^5}{24 \times 3600} \text{ m/sec} = 465.185$ $a = \frac{V^2}{R} = \frac{(46.5185)^2}{64 \times 10^5} = 0.0338 \text{m/sec}^2$ RAJ. COM 3. V = 2t. r = 1 cma) Radial acceleration at t = 1 sec. $a = \frac{v^2}{r} = \frac{2^2}{1} = 4$ cm/sec² b) Tangential acceleration at t = 1sec. $a = \frac{dv}{dt} = \frac{d}{dt}(2t) = 2cm/sec^2$ c) Magnitude of acceleration at t = 1sec $a = \sqrt{4^2 + 2^2} = \sqrt{20} \text{ cm/sec}^2$ 4. Given that m = 150kg, Given that m = 150kg, v= 36km/hr = 10m/sec, r = 30m Horizontal force needed is $r = \frac{150 \times (10)^2}{30} = \frac{150 \times 100}{30} = 500N$ in the diagram 5. $R \cos \theta = mg$..(i) $R \sin \theta = \frac{mv^2}{r}$...(ii) Dividing equation (i) with equation (ii) $\operatorname{Tan} \theta = \frac{\mathrm{mv}^2}{\mathrm{rmg}} = \frac{\mathrm{v}^2}{\mathrm{rg}}$ v = 36km/hr = 10m/sec, r = 30m Tan $\theta = \frac{v^2}{rg} = \frac{100}{30 \times 10} = (1/3)$ $\Rightarrow \theta = \tan^{-1}(1/3)$ 6. Radius of Park = r = 10m speed of vehicle = 18km/hr = 5 m/sec Angle of banking $\tan \theta = \frac{v^2}{rg}$ $\Rightarrow \theta = \tan^{-1} \frac{v^2}{rg} = \tan^{-1} \frac{25}{100} = \tan^{-1}(1/4)$

7. The road is horizontal (no banking)

$$\frac{mv^2}{R} = \mu N$$

and N = mg
So $\frac{mv^2}{R} = \mu$ mg v = 5m/sec, R = 10m
 $\Rightarrow \frac{25}{10} = \mu g \Rightarrow \mu = \frac{25}{100} = 0.25$

 μ g mv²/R mg

8. Angle of banking = θ = 30° Radius = r = 50m

$$\tan \theta = \frac{v^2}{rg} \Rightarrow \tan 30^\circ = \frac{v^2}{rg}$$
$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{v^2}{rg} \Rightarrow v^2 = \frac{rg}{\sqrt{3}} = \frac{50 \times 10}{\sqrt{3}}$$
$$\Rightarrow v = \sqrt{\frac{500}{\sqrt{3}}} = 17 \text{m/sec.}$$

9. Electron revolves around the proton in a circle having proton at the centre. Centripetal force is provided by coulomb attraction.

r = 5.3 →t 10⁻¹¹m m = mass of electron = 9.1 × 10⁻³kg
charge of electron = 1.6 × 10⁻¹⁹c.

$$\frac{mv^2}{r} = k\frac{q^2}{r^2} \Rightarrow v^2 = \frac{kq^2}{rm} = \frac{9 \times 10^9 \times 1.6 \times 1.6 \times 10^{-38}}{5.3 \times 10^{-11} \times 9.1 \times 10^{-31}} = \frac{23.04}{48.23} \times 10^{13}$$

$$\Rightarrow v^2 = 0.477 \times 10^{13} = 4.7 \times 10^{12}$$

 $\Rightarrow v = \sqrt{4.7 \times 10^{12}} = 2.2 \times 10^{6} \text{ m/sec}$ 10. At the highest point of a vertical circle

$$\frac{mv^2}{R} = mg$$

- $\Rightarrow v^2 = Rg \Rightarrow v = \sqrt{Rg}$
- 11. A celling fan has a diameter = 120cm.

 \therefore Radius = r = 60cm = 0/6m Mass of particle on the outer end of a blade is 1g.

n = 1500 rev/min = 25 rev/sec

 $\omega = 2 \pi n = 2 \pi \times 25 = 157.14$

Force of the particle on the blade = $Mr\omega^2$ = (0.001) × 0.6 × (157.14) = 14.8N

The fan runs at a full speed in circular path. This exerts the force on the particle (inertia). The particle also exerts a force of 14.8N on the blade along its surface.

12. A mosquito is sitting on an L.P. record disc & rotating on a turn table at $33\frac{1}{2}$ rpm.

$$n = 33\frac{1}{3} \text{ rpm} = \frac{100}{3 \times 60} \text{ rps}$$

$$\therefore \omega = 2 \pi \text{ n} = 2 \pi \times \frac{100}{180} = \frac{10\pi}{9} \text{ rad/sec}$$

$$r = 10 \text{ cm} = 0.1 \text{ m}, \quad g = 10 \text{ m/sec}^2$$

$$\mu \text{ mg} \ge \text{ mr}\omega^2 \Rightarrow \mu = \frac{r\omega^2}{g} \ge \frac{0.1 \times \left(\frac{10\pi}{9}\right)^2}{10}$$

$$\Rightarrow \mu \ge \frac{\pi^2}{81}$$

Chapter 7

mg plane, (fig-a) μ mg = m ω_1^2 L μ mg $\omega_1 = \sqrt{\frac{\mu g}{I}}$ R (Fig-a) b) When the ruler makes uniformly accelerated circular motion,(fig-b) $m\omega_2^2L$ $\mu \operatorname{mg} = \sqrt{(\operatorname{m}\omega_2^2 L)^2 + (\operatorname{m}L\alpha)^2} \implies \omega_2^4 + \alpha^2 = \frac{\mu^2 g^2}{L^2} \implies \omega_2 = \left| \left(\frac{\mu g}{L} \right)^2 - \alpha^2 \right|^2$ μ mg (Fig-b) mLα (When viewed from top) 22. Radius of the curves = 100m Weight = 100kg Velocity = 18km/hr = 5m/sec a) at B mg - $\frac{mv^2}{R}$ = N \Rightarrow N = (100 × 10) - $\frac{100 \times 25}{100}$ = 1000 - 25 = 975N At d, N = mg + $\frac{mv^2}{D}$ = 1000 + 25 = 1025 N b) At B & D the cycle has no tendency to slide. So at B & D, frictional force is zero. mv²/R At 'C', mg sin θ = F \Rightarrow F = 1000 $\times \frac{1}{\sqrt{2}}$ = 707N c) (i) Before 'C' mg cos θ – N = $\frac{mv^2}{R}$ \Rightarrow N = mg cos θ + $\frac{mv^2}{R}$ = 707 – 25 = 683N (ii) N – mg cos $\theta = \frac{mv^2}{R} \Rightarrow$ N = $\frac{mv^2}{R}$ + mg cos θ = 25 + 707 = 732N d) To find out the minimum desired coeff. of friction, we have to consider a point just before C. (where N is minimum) Now, μ N = mg sin $\theta \Rightarrow \mu \times 682 = 707$ So, µ = 1.037 23. d = 3m \Rightarrow R = 1.5m R = distance from the centre to one of the kids N = 20 rev per min = 20/60 = 1/3 rev per sec $\omega = 2\pi r = 2\pi/3$ m = 15kg:. Frictional force F = mr ω^2 = 15 × (1.5) × $\frac{(2\pi)^2}{9}$ = 5 × (0.5) × $4\pi^2$ = 10 π^2 \therefore Frictional force on one of the kids is $10\pi^2$ 24. If the bowl rotates at maximum angular speed, the block tends to slip upwards. So, the frictional force acts downward. Here, $r = R \sin \theta$ From FBD -1 $R_1 - mg \cos \theta - m\omega_1^2 (R \sin \theta) \sin \theta = 0$...(i) [because r = R sin θ] and $\mu R_1 \text{ mg sin } \theta - m\omega_1^2 (R \sin \theta) \cos \theta = 0$..(ii) Substituting the value of R₁ from Eq (i) in Eq(ii), it can be found out that $\omega_1 = \left[\frac{g(\sin\theta + \mu\cos\theta)}{R\sin\theta(\cos\theta - \mu\sin\theta)}\right]^{1/2}$ Again, for minimum speed, the frictional force $m\omega_1^2 r$ $m\omega_2^2 r$ μ R₂ acts upward. From FBD–2, it can be proved uR₁ that, (FBD - 1) (FBD - 2)

21. a) When the ruler makes uniform circular motion in the horizontal

 $u' \cos \theta$

mgcos0/2

mv²/r

mg

mg

 $\mu \cos \theta$

u sin θ

$$\omega_2 = \left[\frac{g(\sin\theta - \mu\cos\theta)}{R\sin\theta(\cos\theta + \mu\sin\theta)}\right]^{1/2}$$

 \therefore the range of speed is between ω_1 and ω_2

25. Particle is projected with speed 'u' at an angle θ . At the highest pt. the vertical component of velocity is '0'

So, at that point, velocity =
$$u \cos \theta$$

centripetal force = $m u^2 \cos^2\left(\frac{\theta}{r}\right)$

At highest pt.

$$mg = \frac{mv^2}{r} \Rightarrow r = \frac{u^2 \cos^2 \theta}{g}$$

26. Let 'u' the velocity at the pt where it makes an angle $\theta/2$ with horizontal. The horizontal component remains unchanged

 $\cos\theta$

So,
$$v \cos \theta/2 = \omega \cos \theta \Rightarrow v = \frac{u}{c}$$

From figure

mg cos (
$$\theta/2$$
) = $\frac{mv^2}{r} \Rightarrow r = \frac{v^2}{g\cos(\theta/2)}$

putting the value of 'v' from equn(i)

$$r = \frac{u^2 \cos^2 \theta}{g \cos^3(\theta/2)}$$

27. A block of mass 'm' moves on a horizontal circle against the wall of a cylindrical room of radius 'R' Friction coefficient between wall & the block is

> mv² R

...(i)

b) : Frictional force by wall =
$$\frac{\mu m v^2}{R}$$

c)
$$\frac{\mu m v^2}{R} = ma \Rightarrow a = -\frac{\mu v^2}{R}$$
 (Deceleration)
d) Now, $\frac{dv}{dt} = v \frac{dv}{ds} = -\frac{\mu v^2}{R} \Rightarrow ds = -\frac{R}{\mu} \frac{dv}{v}$

$$\Rightarrow s = -\frac{R\mu}{In} V + c$$

At s = 0, v =
$$v_0$$

Therefore, c = $\frac{R}{\mu} \ln V_0$

so, s =
$$-\frac{R}{\mu} \ln \frac{v}{v_0} \Rightarrow \frac{v}{v_0} = e^{-\mu s/R}$$

For, one rotation s = $2\pi R$, so v = $v_0 e^{-2\pi\mu}$

28. The cabin rotates with angular velocity to & radius R

 \therefore The particle experiences a force mR ω^2 .

The component of mR ω^2 along the groove provides the required force to the particle to move along AB. $\therefore \mathsf{mR}\omega^2 \cos \theta = \mathsf{ma} \Rightarrow \mathsf{a} = \mathsf{R}\omega^2 \cos \theta$ length of groove = Lθ L = ut + $\frac{1}{2}$ at² \Rightarrow L = $\frac{1}{2}$ R $\omega^2 \cos \theta t^2$

$$\Rightarrow t^{2} = \frac{2L}{R\omega^{2}\cos\theta} = \Rightarrow t = 1\sqrt{\frac{2L}{R\omega^{2}\cos\theta}}$$

29. v = Velocity of car = 36km/hr = 10 m/s

r = Radius of circular path = 50m

m = mass of small body = 100g = 0.1kg.

 μ = Friction coefficient between plate & body = 0.58

a) The normal contact force exerted by the plate on the block

$$N = \frac{mv^2}{r} = \frac{0.1 \times 100}{50} = 0.2N$$

b) The plate is turned so the angle between the normal to the plate & the radius of the road slowly increases

$$N = \frac{mv^2}{r} \cos \theta \qquad ..(i)$$
$$\mu N = \frac{mv^2}{r} \sin \theta \qquad ..(ii)$$

Putting value of N from (i)

$$\mu \frac{mv^2}{r} \cos \theta = \frac{mv^2}{r} \sin \theta \Rightarrow \mu = \tan \theta \Rightarrow \theta = \tan^{-1} \mu = \tan^{-1}(0.58) = 30^{\circ}$$

30. Let the bigger mass accelerates towards right with 'a'.

From the free body diagrams,

T - ma - m
$$\omega^2 R = 0$$
 ...(i)
T + 2ma - 2m $\omega^2 R = 0$...(ii)
Eq (i) - Eq (ii) \Rightarrow 3ma = m $\omega^2 R$
 \Rightarrow a = $\frac{m\omega^2 R}{3}$
Substituting the value of a in Equation (i), we get T = 4/3 m $\omega^2 R$.

