SOLUTIONS TO CONCEPTS CHAPTER - 1

1. a) Linear momentum :
$$mv = [MLT^{-1}]$$

b) Frequency :
$$\frac{1}{T} = [M^0 L^0 T^{-1}]$$

c) Pressure :
$$\frac{\text{Force}}{\text{Area}} = \frac{[MLT^{-2}]}{[I^2]} = [ML^{-1}T^{-2}]$$

2. a) Angular speed
$$\omega = \theta/t = [M^0L^0T^{-1}]$$

b) Angular acceleration
$$\alpha = \frac{\omega}{t} = \frac{M^0 L^0 T^{-2}}{T} = [M^0 L^0 T^{-2}]$$

c) Torque
$$\tau = F r = [MLT^{-2}] [L] = [ML^2T^{-2}]$$

c) Torque
$$\tau$$
 = F r = [MLT⁻²] [L] = [ML²T⁻²]
d) Moment of inertia = Mr² = [M] [L²] = [ML²T⁰]

3. a) Electric field E = F/q =
$$\frac{MLT^{-2}}{[IT]}$$
 = $[MLT^{-3}I^{-1}]$

b) Magnetic field B =
$$\frac{F}{qv} = \frac{MLT^{-2}}{[IT][LT^{-1}]} = [MT^{-2}I^{-1}]$$

c) Magnetic permeability
$$\mu_0$$
 = $\frac{B \times 2\pi a}{I} = \frac{MT^{-2}I^{-1}] \times [L]}{[I]} = [MLT^{-2}I^{-2}]$

b) Magnetic dipole moment
$$M = IA = [I] [L^2] [L^2]$$

5.
$$E = hv$$
 where $E = energy$ and $v = frequency$.

$$h = \frac{E}{v} = \frac{[ML^2T^{-2}]}{[T^{-1}]}[ML^2T^{-1}]$$

6. a) Specific heat capacity = C =
$$\frac{Q}{m\Delta T} = \frac{[ML^2T^{-2}]}{[M][K]} = [L^2T^{-2}K^{-1}]$$

b) Coefficient of linear expansion =
$$\alpha$$
 = $\frac{L_1 - L_2}{L_0 \Delta T} = \frac{[L]}{[L][R]} = [K^{-1}]$

c) Gas constant = R =
$$\frac{PV}{nT} = \frac{[ML^{-1}T^{-2}][L^{3}]}{[(mol)][K]} = [ML^{2}T^{-2}K^{-1}(mol)^{-1}]$$

a) Density =
$$\frac{m}{V}$$
 $\frac{\text{(force/acceleration)}}{\text{Volume}} = \frac{[F/LT^{-2}]}{[L^2]} = \frac{F}{L^4T^{-2}} = [FL^{-4}T^2]$

b) Pressure =
$$F/A = F/L^2 = [FL^{-2}]$$

c) Momentum = mv (Force / acceleration)
$$\times$$
 Velocity = $[F / LT^{-2}] \times [LT^{-1}] = [FT]$

d) Energy =
$$\frac{1}{2}$$
mv² = $\frac{\text{Force}}{\text{acceleration}} \times (\text{velocity})^2$
= $\left[\frac{F}{LT^{-2}}\right] \times [LT^{-1}]^2 = \left[\frac{F}{LT^{-2}}\right] \times [L^2T^{-2}] = [FL]$

8.
$$g = 10 \frac{\text{metre}}{\text{sec}^2} = 36 \times 10^5 \text{ cm/min}^2$$

Converting to S.I. units,
$$\frac{0.02 \times 1.6 \times 1000}{3600}$$
 m/sec [1 mile = 1.6 km = 1600 m] = 0.0089 ms⁻¹

In SI units = 70 miles/hour =
$$\frac{70 \times 1.6 \times 1000}{3600}$$
 = 31 m/s

10. Height h = 75 cm, Density of mercury = 13600 kg/m^3 , g = 9.8 ms^{-2} then

Pressure = hfg = 10×10^4 N/m² (approximately)

In C.G.S. Units, $P = 10 \times 10^5$ dyne/cm²

11. In S.I. unit 100 watt = 100 Joule/sec

In C.G.S. Unit = 10⁹ erg/sec

12. 1 micro century = $10^4 \times 100$ years = $10^{-4} \times 365 \times 24 \times 60$ min

So, $100 \text{ min} = 10^5 / 52560 = 1.9 \text{ microcentury}$

13. Surface tension of water = 72 dyne/cm

In S.I. Unit, 72 dyne/cm = 0.072 N/m

14. $K = kl^a \omega^b$ where k = Kinetic energy of rotating body and k = dimensionless constant Dimensions of left side are,

 $K = [ML^2T^{-2}]$

Dimensions of right side are,

$$I^a = [ML^2]^a$$
, $\omega^b = [T^{-1}]^b$

According to principle of homogeneity of dimension,

$$[ML^2T^{-2}] = [ML^2T^{-2}][T^{-1}]^b$$

Equating the dimension of both sides,

$$2 = 2a$$
 and $-2 = -b \Rightarrow a = 1$ and $b = 2$

15. Let energy $E \propto M^a C^b$ where M = Mass, C = speed of light

$$\Rightarrow$$
 E = KM^aC^b (K = proportionality constant)

Dimension of left side

$$E = [ML^2T^{-2}]$$

Dimension of right side

$$M^{a} = [M]^{a}, [C]^{b} = [LT^{-1}]^{b}$$

$$|| (ML^2T^{-2})| = [M]^a[LT^{-1}]^b$$

$$\Rightarrow$$
 a = 1; b = 2

So, the relation is $E = KMC^2$

16. Dimensional formulae of R = $[ML^2T^{-3}I^{-2}]$

Dimensional formulae of $V = [ML^2T^3I^{-1}]$

Dimensional formulae of I = [I]

$$\Rightarrow$$
 V = IF

17. Frequency f = KL^aF^bM^c M = Mass/unit length, L = length, F = tension (force)

Dimension of $f = [T^{-1}]$

Dimension of right side,

$$L^{a} = [L^{a}], F^{b} = [MLT^{-2}]^{b}, M^{c} = [ML^{-1}]^{c}$$

$$T : [T^{-1}] = K[L]^a [MLT^{-2}]^b [ML^{-1}]^c$$

$$M^0L^0T^{-1} = KM^{b+c}L^{a+b-c}T^{-2b}$$

Equating the dimensions of both sides,

∴
$$b + c = 0$$
 ...(1)

$$-c + a + b = 0$$
 ...(2)

$$-2b = -1$$
 ...(3)

Solving the equations we get,

$$a = -1$$
, $b = 1/2$ and $c = -1/2$

$$\ \ \, ... \ \, \text{So, frequency f = } \, KL^{-1}F^{1/2}M^{-1/2} = \, \frac{K}{L}F^{1/2}M^{-1/2} = \frac{K}{L} = \sqrt{\frac{F}{M}}$$

18. a)
$$h = \frac{2SCos\theta}{\rho rg}$$

Surface tension = S = F/I =
$$\frac{MLT^{-2}}{L}$$
 = [MT⁻²]

Density =
$$\rho$$
 = M/V = [ML⁻³T⁰]

Radius =
$$r = [L], g = [LT^{-2}]$$

$$RHS = \frac{2S\cos\theta}{\rho rg} = \frac{[MT^{-2}]}{[ML^{-3}T^0][L][LT^{-2}]} = [M^0L^1T^0] = [L]$$

So, the relation is correct

b)
$$v = \sqrt{\frac{p}{\rho}}$$
 where $v = velocity$

LHS = Dimension of
$$v = [LT^{-1}]$$

Dimension of p =
$$F/A = [ML^{-1}T^{-2}]$$

Dimension of
$$\rho$$
 = m/V = [ML⁻³]

RHS =
$$\sqrt{\frac{p}{\rho}} = \sqrt{\frac{[ML^{-1}T^{-2}]}{[ML^{-3}]}} = [L^2T^{-2}]^{1/2} = [LT^{-1}]$$

So, the relation is correct.

c)
$$V = (\pi pr^4 t) / (8\eta I)$$

LHS = Dimension of
$$V = [L^3]$$

LHS = Dimension of V =
$$[L^3]$$

Dimension of p = $[ML^{-1}T^{-2}]$, $r^4 = [L^4]$, t = $[T]$

$$RHS = \frac{\pi p r^4 t}{8 \eta I} = \frac{[ML^{-1}T^{-2}][L^4][T]}{[ML^{-1}T^{-1}][L]}$$

So, the relation is correct

d)
$$v = \frac{1}{2\pi} \sqrt{(mgl/l)}$$

LHS = dimension of
$$v = [T^{-1}]$$

RHS =
$$\sqrt{(\text{mgI/I})} = \sqrt{\frac{[M][LT^{-2}][L]}{[ML^2]}} = [T^{-1}]$$

So, the relation is correct.

19. Dimension of the left side =
$$\int \frac{dx}{\sqrt{(a^2 - x^2)}} = \int \frac{L}{\sqrt{(L^2 - L^2)}} = [L^0]$$

Dimension of the right side =
$$\frac{1}{a}\sin^{-1}\left(\frac{a}{x}\right) = [L^{-1}]$$

So, the dimension of
$$\int \frac{dx}{\sqrt{(a^2-x^2)}} \neq \frac{1}{a} \sin^{-1} \left(\frac{a}{x}\right)$$

So, the equation is dimensionally incorrect.

20. Important Dimensions and Units:

Dimension	01
	SI unit
	newton
	joule
-	watt
-	N-m ² /kg ²
	radian/s
-	kg-m ² /s
	kg-m ²
-	N-m
$[M^1L^{-1}T^{-2}]$	N/m ²
$[M^1T^{-2}]$	N/m
$[M^1L^{-1}T^{-1}]$	N-s/m ²
$[M^1L^{-1}T^{-2}]$	N/m² (Pascal)
$[M^1T^{-3}]$	watt/m ²
	J/kg-K
	watt/m ² -k ⁴
	watt/m-K
	ampere/m²
•	$\Omega^{-1}~\text{m}^{-1}$
	C-m
$[M^1L^1I^{-1}T^{-3}]$	V/m
$[M^1L^2I^{-1}T^{-3}]$	volt
$[M^{1}T^{3}I^{-1}L^{-3}]$	volt/m
$[I^2T^4M^{-1}L^{-2}]$	farad (F)
$[l^2T^4M^{-1}L^{-3}]$	$C^2/N-m^2$
$[M^1L^1]^{-2}T^{-3}]$	Newton/A ²
[l ¹ L ²]	N-m/T
$[M^1L^2I^{-1}T^{-2}]$	Weber (Wb)
$[M^1I^{-1}T^{-2}]$	tesla
$[M^1L^2I^{-2}T^{-2}]$	henry
$[M^1L^2I^{-2}T^{-3}]$	ohm (Ω)
	[M¹L⁻¹T⁻¹] [M¹L⁻¹T⁻¹] [M¹L⁻¹T⁻²] [M¹T⁻³] [L²T⁻²K⁻¹] [M¹T⁻³K⁻⁴] [M'L¹T⁻³K⁻¹] [l¹L⁻²] [l¹L⁻²] [l¹L⁻³] [M¹L¹I⁻¹T⁻³] [M¹L²I⁻¹T⁻³] [M¹T³I⁻¹L⁻³] [l²T⁴M⁻¹L⁻²] [l²T⁴M⁻¹L⁻²] [l¹L²] [M¹L²I⁻¹T⁻²] [M¹L²I⁻¹T⁻²] [M¹L²I⁻¹T⁻²] [M¹L²I⁻¹T⁻²] [M¹L²I⁻¹T⁻²]

* * *